Make your own free website on


  • ADAMS, C.C.: The Knot Book, Freeman, New York, 1994.
  • AIGNER, M.: Combiniatrial Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
  • ASCHER, M.: Ethnomathematics: A Multicultural View of Mathematical Ideas, Brooks/Cole, 1991.
  • BAIN, G.: Celtic Art - the Methods of Construction, Dover, New York, 1973.
  • BARRETT, C.: Op-art, Studio Vista, London, 1970.
  • CAUDRON A.: Classification des noeuds et des enlancements, Prepublications Univ. Paris Sud, Orsay, 1981.
  • CONWAY J.H.: An enumeration of knots and links and some of their algebraic properties, In Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, 329-358.
  • CROMWEL, P.R.: Celtic knotwork: mathematical art, The Math. Intelligencer 15, 1 (1993), 36-47.
  • DOWKER, C.H.; THISTLETHWAITE, M.B.: Classification of knot projections, Topology Appl. 16 (1983), 19-31.
  • FARMER, D.; STANFORD, B.: Knots and Surfaces, American Mathematical Society, 1996.
  • FONTINHA, M.: Desenhos na areiados Quiocos do Nordeste de Angola, Inst. de Invest. Cientif. Tropical, Lisboa, 1983.
  • GARDNER, M.: Mathematical Puzzles and Diversions, Penguin Books, London, 1991.
  • GERDES, P.: Reconstruction and extension of lost symmetries, Comput. Math. Appl. 17, 4-6 (1989) 791-813 (also in Symmetry: Unifying Human Understanding II, Ed. I.Hargittai).
  • GERDES, P.: On ethnomathematical research and symmetry, Symmetry: Culture and Science 1, 2 (1990) 154-170.
  • GERDES, P.: Geometria Sona,
  • GERDES, P.: Extensions of a reconstructed Tamil ring-pattern, in The Pattern Book: Fractals, Art and Nature, Ed. C.Pickower. World Scientific, Singapoore, 1995, pp. 377-379.
  • GERDES, P.: Lunda Geometry - Designs, Polyominoes, Patterns, Symmetries, Universidade Pedagogica, Mocambique, 1996.
  • GERDES, P.: On mirror curves and Lunda designs, Comput. & Graphics 21, 3 (1997) 371-378.
  • GERDES, P.: On Lunda-designs and Lunda-animals. Fibonacci returns to Africa, The Fibonacci Quarterly (to appear).
  • GERDES P.: Geometrical and educational explorations inspired by African cultural activities, Mathematical Association of America, Washington DC (to appear).
  • GOLOMB, S.: Polyominoes: Puzzles, Patterns, Problems and Packings, Princeton University Press, New York, 1994.
  • GRÜNBAUM, B.; SHEPHARD, G.C.: Tilings and Patterns, W.H.Freeman, New York, 1987.
  • HARARY, F.; PALMER, E.: Graphical Enumeration, Academic Press, New York, London, 1973.
  • JABLAN, S.V.: Periodic antisymmetry tilings, Symmetry: Culture and Science 3, 3 (1992), 281-291.
  • JABLAN, S.V.: Magic, CEVISAMA'94, Valencia.
  • JABLAN, S.V.: Theory of Symmetry and Ornament, The Math. Inst., Belgrade, 1995.
  • JABLAN, S.V.: Mirror generated curves, Symmetry: Culture and Science 6, 2 (1995) 275-278.
  • JABLAN, S.V.: Mirror, mirror on the wall..., Symmetry: Culture and Science (to appear).
  • JABLAN, S.V.: Geometry of links, AMS Preprint Server, 1997.
  • KAUFFMAN L.H.: On Knots, Princeton University Press, Princeton, 1987.
  • KIRKMAN, T.P.: The enumeration, description and construction of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh, 32 (1885), 281-309.
  • LAYARD, J.: Labyrinth ritual in South India: threshold and tattoo designs, Folk-Lore 48 (1937) 115-182.
  • LIVINGSTON, C.: Knot Theory, Math. Assoc. Amer., Washington DC, 1993.
  • PEARSON, E.: People of the Aurora, Beta Books, San Diego, 1977.
  • SANTOS, E. DOS: Sobre a matematica dos Quiocos de Angola, in Garcia de Orta, Lisboa, Vol. 8, 1960, 257-271.
  • SANTOS, E. DOS: Contribuicao para o estudo das pictografias e ideogramas dos Quiocos, in Estudos sobre a etnologia do ultramar portugues, Lisboa, Vol. 2, 1961, 17-131.
  • TAIT, P.G.: On knots, I, II, III, in Scientific Papers, Vol. 1, C.U.P., London, 1898, 273-347.
  • TURNER, J.C.; GRIEND, P. VAN DE (Eds.): History and Science of Knots, World Scientific, Singapoore, 1996.
  • WASHBURN, D.; CROWE, D.: Symmetries of Culture, University of Washington Press, Seattle, 1988.
  • ZASLAVSKY C.: Africa Counts: Number and Pattern in African Culture, Weber & Shmidt, Boston, 1973.

    WWW Sites

    Centre for the Popularization of Mathematics

  • Exibition: Mathematics and Knots

  • Dragon Curve
  • Fibonacci Numbers
  • Polyomino
  • Polyomino Tiling

  • Atlas of Oriented Alternating Knots and Links by C.Cerf.

    Dragon curves


  • Ethnomathematics Study

    Finite Mathematics: Eulerian graphs

    Geometry Junkyard

  • Knot Theory

  • Hello Polyomino!
  • Simple Polyominoes

    Info on Polyominoes

    ISIS Symmetry (International Society for the Interdisciplinary Study of Symmetry)

    A Knot Theory Primer

    Knot a Braid of Links

    KnotPlot Site

    Knots on the Web

    Learning in Motion

    Mouse's Knot Theory Home Page

    This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 85/1997.

    The use in educational and noncomercial purposes is encuraged.
    For any other use of this material, the author's permition is necessary.
    All the illustrations are designed by the author in CorelDRAW®.

    The presentation Mirror Curves is located at and
    and last modified on 03.02.1999.