7. References

[1] Kirkman T.P.: The enumeration, description and construction of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh, 32 (1885), 281-309.

[2] Conway J.: An enumeration of knots and links and some of their related properties, in Computational Problems in Abstract Algebra, Proc. Conf., Oxford 1967 (ed. J.Leech), 329-358. New York: Pergamon Press, 1970. 

[3] Caudron A.: Classification des noeuds et des enlancements, Public. Math. d'Orsay 82. Orsay: Univ. Paris Sud, Dept. Math., 1982.

[4] Jablan S.V.: Geometry of Links, AMS Preprint Server, #199706-57-001, 1997.

[5] Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups, Berlin, Heidelberg, New York: Springer Verlag, 1980.

[6] Harary F., Palmer E.: Graphical Enumeration, New York, London: Academic Press, 1973.

[7] Broersma H.J., Duijvestijn A.J.W., Göbel F.: Generating All 3-Connected 4-Regular Planar Graphs from the Octahedron Graph, J. Graph Theory, 17, 5 (1993), 613-620.

[8] Dillencourt M.B.: Polyhedra of Small Order and Their Hamiltonian Properties, J. Combinatorial Theory, Ser. B, 66 (1996), 87-122.

[9] Vesnin A.Yu.: Kubicheskie grafy i generirovanie al'ternirovannyh zaceplenij, Mat. metody v hem. informatike, 140 (1991), 63-86. 

[10] Adams C.C.: The Knot Book, New York, W.H. Freeman, 1994.

[11] Jablan S.V.: Mirror generated curves, Symmetry: Culture and Science, 6, 2 (1995), 275-278.

[12] Burde G., Zeischang H.: Knots, Berlin, New York: W. de Greyter, 1985.

[13] Gerdes P.: Molecular Modeling of Fullerenes with Hexastrips, Chem. Intelligencer, 1 (1998), 40-45.

[14] Tarnai T.: Buckling Patterns of Shells and Spherical Honeycomb Structures, Computers. Math. Applic., 17, 4-6 (1989), 639-652 (also in Symmetry: Unifying Human Understanding 2, (ed. I.Hargittai), 639-652, Oxford, New York: Pergamon Press, 1989).

[15] Grünbaum B., Motzkin T.S.: The number of hexagons and the simplicity of geodesics on certain polyhedra, Can. J. Math., 15 (1963), 744-751.

[16] Bohm J., Dornberger-Schiff K.: The nomenclature of crystallographic symmetry groups, Acta Crystallogr., 21 (1966), 1004-1007.

[17] Boo W.O.J.: An Introduction to Fullerene Structures, J. Chem. Education, 69, 8 (1992), 605-609.

[18] Balaban A.T.: Carbon and its nets, Computers. Math. Applic., 17, 1-3 (1989), 397-416 (also in Symmetry: Unifying Human Understanding 2, (ed. I.Hargittai), 397-416, Oxford, New York: Pergamon Press, 1989).

[19] Grünbaum B., Shephard G.C.: Tilings and Patterns, New York: W.H. Freeman, 1986.

[20] Kroto H.W.: C60B Buckminsterfullerene, other fullerenes and the icospiral shell, Computers. Math. Applic., 17, 1-3 (1989), 417-423 (also in Symmetry: Unifying Human Understanding 2, (ed. I.Hargittai), 417-423, Oxford, New York: Pergamon Press, 1989).

[21] Mackay A.L., Terrones H.: Hypothetical graphite structures with negative gaussian curvature, Phil. Trans. Roy. Soc.London A, 343 (1993), 113-127.

[22] Bilinski S.: Die quasiregulären Polyeder vom Geschelcht 2, Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Band 194, 1-3, 1985.


WWW Sites

  • A Knot Theory Primer
  • Abstracts
  • American Scientist Article: Fullerene Nanotubes: C
  • Byckyball Net - Paper
  • Byckyball Resources on the Net
  • Byckyballs
  • Byckyball Speech
  • Bucky News Service
  • Carnegie-Mellon's Fullerene Links
  • Fullerene Links
  • Fullerene Research at the University of Vienna
  • Fullerene Tinkertoys
  • Geometry Forum
  • Harold Kroto Winner of the 1996 Nobel Prize in Chemistry
  • Prof. H. Kroto (University of Sussex)
  • Helicoidal Graphite
  • Prof. D.R. Huffman (University of Arizona)
  • Japan's Fullerene Gallery
  • Knots on the Web (Peter Suber)
  • Mathematical Archives: Geometry
  • Molecule of the Month
  • Oak Ridge Labs
  • Richard Buckminster Fuller
  • Richard Smalley Winner of the 1996 Nobel Prize in Chemistry
  • Prof. R.E. Smalley (Rice University)
  • Robert Curl Winner of the 1996 Nobel Prize in Chemistry
  • SUNY Stonybrook Buckyball Homepage
  • Sussex Fullerene Gallery
  • The Buckyball Database
  • The Geometry Center
  • The Geometry Junkyard
  • The geometry of large fullerene cages: C
  • The geometry of small fullerene cages: C
  • The KnotPlot Site
  • The Nanotube Site
  • USB Byckyball Home Page
  • USFG-Gallery
  • Why the name Fullerene?
  • WWW for Fullerene

    The use in educational and noncomercial purposes is encuraged.
    For any other use of this material, the author's permition is necessary.
    All the illustrations are designed by the author in CorelDRAW®.

    The paper Geometry of Fullerenes is located at
    http://www.mi.sanu.ac.yu/~jablans/ful.htm and
    and last modified on 1.08.1998.