7. References [1] Kirkman T.P.: The enumeration, description and construction
of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh,
32 (1885), 281-309.
[2] Conway J.: An enumeration of knots and links and some
of their related properties, in Computational Problems in Abstract Algebra,
Proc. Conf., Oxford 1967 (ed. J.Leech), 329-358. New York: Pergamon Press,
1970.
[3] Caudron A.: Classification des noeuds et des enlancements,
Public. Math. d'Orsay 82. Orsay: Univ. Paris Sud, Dept. Math., 1982.
[4] Jablan S.V.: Geometry of Links, AMS Preprint Server,
#199706-57-001, 1997.
[5] Coxeter H.S.M., Moser W.O.J.: Generators and Relations
for Discrete Groups, Berlin, Heidelberg, New York: Springer Verlag,
1980.
[6] Harary F., Palmer E.: Graphical Enumeration,
New York, London: Academic Press, 1973.
[7] Broersma H.J., Duijvestijn A.J.W., Göbel F.:
Generating All 3-Connected 4-Regular Planar Graphs from the Octahedron
Graph, J. Graph Theory, 17, 5 (1993), 613-620.
[8] Dillencourt M.B.: Polyhedra of Small Order and Their
Hamiltonian Properties, J. Combinatorial Theory, Ser. B, 66
(1996), 87-122.
[9] Vesnin A.Yu.: Kubicheskie grafy i generirovanie al'ternirovannyh zaceplenij, Mat. metody v hem. informatike, 140 (1991), 63-86. [10] Adams C.C.: The Knot Book, New York, W.H.
Freeman, 1994.
[11] Jablan S.V.: Mirror generated curves, Symmetry:
Culture and Science, 6, 2 (1995), 275-278.
[12] Burde G., Zeischang H.: Knots, Berlin, New
York: W. de Greyter, 1985.
[13] Gerdes P.: Molecular Modeling of Fullerenes with
Hexastrips, Chem. Intelligencer, 1 (1998), 40-45.
[14] Tarnai T.: Buckling Patterns of Shells and Spherical
Honeycomb Structures, Computers. Math. Applic., 17, 4-6 (1989),
639-652 (also in Symmetry: Unifying Human Understanding 2,
(ed. I.Hargittai), 639-652, Oxford, New York: Pergamon Press, 1989).
[15] Grünbaum B., Motzkin T.S.: The number of hexagons
and the simplicity of geodesics on certain polyhedra, Can. J. Math.,
15 (1963), 744-751.
[16] Bohm J., Dornberger-Schiff K.: The nomenclature of
crystallographic symmetry groups, Acta Crystallogr., 21 (1966),
1004-1007.
[17] Boo W.O.J.: An Introduction to Fullerene Structures,
J. Chem. Education, 69, 8 (1992), 605-609.
[18] Balaban A.T.: Carbon and its nets, Computers.
Math. Applic., 17, 1-3 (1989), 397-416 (also in Symmetry:
Unifying Human Understanding 2, (ed. I.Hargittai), 397-416,
Oxford, New York: Pergamon Press, 1989).
[19] Grünbaum B., Shephard G.C.: Tilings and Patterns,
New York: W.H. Freeman, 1986.
[20] Kroto H.W.: C60B Buckminsterfullerene,
other fullerenes and the icospiral shell, Computers. Math. Applic.,
17, 1-3 (1989), 417-423 (also in Symmetry: Unifying Human
Understanding 2, (ed. I.Hargittai), 417-423, Oxford, New York: Pergamon
Press, 1989).
[21] Mackay A.L., Terrones H.: Hypothetical graphite structures
with negative gaussian curvature, Phil. Trans. Roy. Soc.London A,
343 (1993), 113-127.
[22] Bilinski S.: Die quasiregulären Polyeder vom Geschelcht 2, Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Band 194, 1-3, 1985. WWW Sites
|
COPYRIGHT STATEMENT
The use in educational and noncomercial purposes is encuraged.
For any other use of this material, the author's permition is necessary.
All the illustrations are designed by the author in
CorelDRAW®.
The paper Geometry of Fullerenes is located at
http://www.mi.sanu.ac.yu/~jablans/ful.htm and
https://members.tripod.com/~modularity/ful.htm
and last modified on 1.08.1998.
|
|
|